Experimental X-ray charge density studies on the binary carbonyls Cr(CO)6, Fe(CO)5, and Ni(CO)4.
نویسندگان
چکیده
The experimental charge densities in the binary carbonyls Cr(CO)(6) (1), Fe(CO)(5) (2), and Ni(CO)(4) (3) have been investigated on the basis of high-resolution X-ray diffraction data collected at 100 K. The nature of the metal-ligand interactions has been studied by means of deformation densities and by topological analyses using the Atoms in Molecules (AIM) approach of Bader. A detailed comparison between the experimental results and theoretical results from previous work and from gas-phase and periodic DFT/B3LYP calculations shows excellent agreement, both on a qualitative and quantitative level. An examination of the kappa-restricted multipole model (KRMM) for Cr(CO)(6), using theoretically derived structure factors, showed it to provide a somewhat worse fit than a model with freely refined kappa' values. The experimental atomic graphs for the metal atoms in 2 and 3 were found to be dependent on the multipole model used for that atom. In the case of compound 2, restriction of the multipole populations according to idealized site symmetry of D(3h) gave an atomic graph in essential agreement with the theoretical gas-phase study. For compound 3, all multipole models fail to reproduce the atomic graph obtained from the theoretical gas-phase study. The atomic quadrupole moments for the C atoms in all compounds were consistent with significant pi back-donation from the metal atoms.
منابع مشابه
The Effect of Different Dopants (Cr, Mn, Fe, Co, Cu and Ni) on Photocatalytic Properties of ZnO Nanostructures
ZnO structures with different dopants (1mol% Cr, Mn, Fe, Co, Cu and Ni) have been synthesized via a simple hydrothermal method using sucrose as a template. These doped ZnO nanostructures characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL). The photocatalytic property of these synthesized materials was studied by a pho...
متن کاملSynthesis of MWCNTs Using Monometallic and Bimetallic Combinations of Fe, Co and Ni Catalysts Supported on Nanometric SiC via TCVD
Nanometric Carbid Silicon (SiC) supported monometallic and bimetallic catalysts containing Fe, Co, Ni transition metals were prepared by wet impregnation method. Multiwall carbon nanotubes (MWCNTs) were synthesized over the prepared catalysts from catalytic decomposition of acetylene at 850°C by thermal chemical vapor deposition (TCVD) technique. The synthesized nanomaterials (catalysts and CNT...
متن کاملStructure and Magnetic Properties of Oxide Nanoparticles of Fe-Co-Ni Synthesized by Co-Precipitation Method
Oxide nanoparticles of Fe-Co-Ni were prepared in six different compositions by co-precipitation method. The as-synthesized nanoparticles were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron microscope (FESEM), Fourier Transform Infrared (FT-IR) and Vibrating Sample Magnetometer (VSM). It was found that the nanoparticles had mean crystalline size of 30-55 nm and spher...
متن کاملSynthesis, Characterization and Investigation of Magnetic Properties of Co3O4/CoFe2O4 Nanocomposite Prepared by Calcination of [CO(SALEN)(PPH3)(H2O)]4[Fe(CN)6] and [Co(Salophen)(PPH3)(H2O)]4[Fe(CN)6] Binary Complex Salts
In this research the synthesis of [Co(Salen)(PPh3)(H2O)]4[Fe(CN)6] and [Co(Salophen)(PPh3)(H2O)]4[Fe(CN)6] schiff base complexes was reported. Co3O4/CoFe2O4 magnetic nanoparticles were prepared by calcination of these complexes at 500, 550 and 600°C. Precursor complexes were identified by FT-IR and UV-Vis spectroscopy and their thermal behavior was studied via TG/DTA. Nanomagnetic samples were ...
متن کاملSynthesis and Surfactant Effect on Structural Analysis of Nickel Doped Cobalt Ferrite Nanoparticles by C-precipitation Method
Nanoparticles of nickel substituted cobalt ferrite (Nix Co1-xFe2 O4 : 0£ X£ 1) have been synthesized by co-precipitation method. Triton x-100 and oleic acid as surfactants were used. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak were found 17 and 21nm. Their morphology structure have been determined by scanning electron microscop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 109 39 شماره
صفحات -
تاریخ انتشار 2005